Dielectric behavior of ceramic–graphene composites around the percolation threshold

نویسندگان

  • Lucía Fernández-García
  • Marta Suárez
  • José Luis Menéndez
  • Carlos Pecharromán
  • Rosa Menéndez
  • Ricardo Santamaría
چکیده

Al2O3/graphene and BaTiO3/graphene composites with different concentrations of the conductive second phase, both below and above the percolation threshold, were prepared by the traditional ceramic processing route followed by spark plasma sintering. It is shown that the addition of graphene pins the grain growth of the ceramic matrix grains, leading to a change of the microstructure at low filler concentrations. As a consequence, the composites exhibit two percolation thresholds and their dielectric properties are not only determined by the dielectric properties of the constituents and their relative fractions but also the microstructure of the composite must be considered. Additionally, a giant increase of the dielectric constant has been found around the percolation thresholds in barium titanate-graphene composites. In particular, values of the dielectric constant up to 45,000 and 15,000 were found at 1 kHz in composites containing 0.4 and 0.6 wt. % graphene, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution

Graphene/polyvinylidene fluoride (PVDF) composites were prepared using in-situ solvothermal reduction of graphene oxide in the PVDF solution. The electrical conductivity of the composites was greatly improved by doping with graphene sheets. The percolation threshold of such composite was determined to be 0.31 vol.%, being much smaller than that of the composites prepared via blending reduced gr...

متن کامل

Conductivity and Dielectric Response of Carbon- Based Composites in a Broad Frequency Range

Composites formed by a dielectric ceramic or polymer matrix and a conductive filler are very interesting materials since their physical properties, such as optical, electrical and magnetic properties as well as tribological, corrosion-resistance and wear properties can be tailored, which makes them attractive for many new electronic, optical, magnetic and structural applications. In particular,...

متن کامل

A model for modified electrode with carbon nanotube composites using percolation theory in fractal space

We introduce a model for prediction the behavior of electrodes which modified withcarbon nanotubes in a polymer medium. These kinds of polymer composites aredeveloped in recent years, and experimental data for its percolation threshold isavailable. We construct a model based on percolation theory and fractal dimensionsand using experimental percolation threshold for calculating the moments of c...

متن کامل

Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold.

Flexible nanodielectric materials with high dielectric constant and low dielectric loss have huge potential applications in the modern electronic and electric industry. Graphene sheets (GS) and reduced-graphene oxide (RGO) are promising fillers for preparing flexible polymer-based nanodielectric materials because of their unique two-dimensional structure and excellent electrical and mechanical ...

متن کامل

Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets

Dielectric properties of composites near percolation threshold (fc) are often sensitive to thermal treatments, and the annealing temperature is usually associated with a polymer's rheological properties. In this study, the influences of the thermal treatment on dielectric properties are investigated for the polystyrene (PS) matrix composite reinforced by graphene nanoplatelets (GNP) fillers nea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015